Library > MUSEN: Aggregatable Key-Evolving Verifiable Random Functions and Applications
MUSEN: Aggregatable Key-Evolving Verifiable Random Functions and Applications
September/2024, SCN '24
VRF
A Verifiable Random Function (VRF) can be evaluated on an input by a prover who holds a secret key, generating a pseudorandom output and a proof of output validity that can be verified using the corresponding public key. VRFs are a central building block of committee election mechanisms that sample parties to execute tasks in cryptographic protocols, e.g. generating blocks in a Proof-of-Stake (PoS) blockchain or executing a round of MPC protocols. We propose the notion, and a matching construction, of an Aggregatable Key-Evolving VRF (A-KE-VRF) with the following extra properties: 1. Aggregation: combining proofs for several VRF evaluations of different inputs under different secret keys into a single constant size proof; 2. Key-Evolving: preventing adversaries who corrupt a party (learning their secret key) from "forging" proofs of past VRF evaluations. As an immediate application, we improve on the block size of PoS blockchains and on the efficiency of Proofs of Proof-of-Stake (PoPoS). Furthermore, the A-KE-VRF notion allows us to construct Encryption to the Future (EtF) and Authentication from the Past (AfP) schemes with a Key-Evolving property, which provides forward security. An EtF scheme allows for sending a message to a party who is randomly selected to execute a role in the future, while an AfP scheme allows for this party to authenticate their messages as coming from a past execution of this role. These primitives are essential for realizing the YOSO MPC Framework (CRYPTO'21).